Other Machines Machines
Self-driving cars combine a variety of sensors to perceive their surroundings, such as radar, lidar, sonar, GPS, odometry and inertial measurement units. Advanced control systems interpret sensory information to identify appropriate navigation paths, as well as obstacles and relevant signage.
Long-distance trucking is seen as being at the forefront of adopting and implementing the technology.
There are different systems that help the self-driving car control the car. Systems that need improvement include the car navigation system, the location system, the electronic map, the map matching, the global path planning, the environment perception, the laser perception, the radar perception, the visual perception, the vehicle control, the perception of vehicle speed and direction, and the vehicle control method.
The challenge for driverless car designers is to produce control systems capable of analyzing sensory data in order to provide accurate detection of other vehicles and the road ahead. Modern self-driving cars generally use Bayesian simultaneous localization and mapping (SLAM) algorithms, which fuse data from multiple sensors and an off-line map into current location estimates and map updates. Waymo has developed a variant of SLAM with detection and tracking of other moving objects (DATMO), which also handles obstacles such as cars and pedestrians. Simpler systems may use roadside real-time locating system (RTLS) technologies to aid localization. Typical sensors include lidar, stereo vision, GPS and IMU. Control systems on automated cars may use Sensor Fusion, which is an approach that integrates information from a variety of sensors on the car to produce a more consistent, accurate, and useful view of the environment. Heavy rainfall, hail, or snow could impede the car sensors.
Driverless vehicles require some form of machine vision for the purpose of visual object recognition. Automated cars are being developed with deep neural networks, a type of deep learning architecture with many computational stages, or levels, in which neurons are simulated from the environment that activate the network. The neural network depends on an extensive amount of data extracted from real-life driving scenarios, enabling the neural network to "learn" how to execute the best course of action.
In May 2018, researchers from the Massachusetts Institute of Technology announced that they had built an automated car that can navigate unmapped roads. Researchers at their Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed a new system, called MapLite, which allows self-driving cars to drive on roads that they have never been on before, without using 3D maps. The system combines the GPS position of the vehicle, a "sparse topological map" such as OpenStreetMap, (i.e. having 2D features of the roads only), and a series of sensors that observe the road conditions. More details
A self-driving car, also known as an autonomous vehicle (AV), connected and autonomous vehicle (CAV), driverless car, robo-car, or robotic car, is a vehicle that is capable of sensing its environment and moving safely with little or no human input.
Self-driving cars combine a variety of sensors to perceive their surroundings, such as radar, lidar, sonar, GPS, odometry and inertial measurement units. Advanced control systems interpret sensory information to identify appropriate navigation paths, as well as obstacles and relevant signage.
Long-distance trucking is seen as being at the forefront of adopting and implementing the technology.
There are different systems that help the self-driving car control the car. Systems that need improvement include the car navigation system, the location system, the electronic map, the map matching, the global path planning, the environment perception, the laser perception, the radar perception, the visual perception, the vehicle control, the perception of vehicle speed and direction, and the vehicle control method.
The challenge for driverless car designers is to produce control systems capable of analyzing sensory data in order to provide accurate detection of other vehicles and the road ahead. Modern self-driving cars generally use Bayesian simultaneous localization and mapping (SLAM) algorithms, which fuse data from multiple sensors and an off-line map into current location estimates and map updates. Waymo has developed a variant of SLAM with detection and tracking of other moving objects (DATMO), which also handles obstacles such as cars and pedestrians. Simpler systems may use roadside real-time locating system (RTLS) technologies to aid localization. Typical sensors include lidar, stereo vision, GPS and IMU. Control systems on automated cars may use Sensor Fusion, which is an approach that integrates information from a variety of sensors on the car to produce a more consistent, accurate, and useful view of the environment. Heavy rainfall, hail, or snow could impede the car sensors.